

Design of a

digital PID controller

by transposing the analog PID

Hugues GARNIER

hugues.garnier@univ-lorraine.fr

- The design of digital PID controllers by transposing analog PID controllers is an approach commonly used in the industry for two major reasons:
 - analog PID controller design methods are generally well-known
 - performance specifications are easier to interpret with continuous-time models than with sampled models

Digital control design by transposing the analog controller

- Workflow
 - 1. Design of a continuous-time PID controller *C*(*s*) by one of the traditional design methods (Ziegler-Nichols or others) determined from the continuous-time model

2. Transpose the continuous-time PID controller C(s) into a digital version C(z) to obtain a digital PID algorithm that behaves as close as possible to the continuous-time control

Parallel PID

In the time domain

$$u(t) = k_p \varepsilon(t) + k_i \int_0^t \varepsilon(\tau) d\tau + k_d \frac{\varepsilon(t)}{dt}$$

In the Laplace domain

$$U(s) = \left(k_p + \frac{k_i}{s} + k_d s\right)\varepsilon(s)$$

$$C(s) = k_p + \frac{k_i}{s} + k_d s$$

Ideal PID form encountered in practice

In the time domain

$$u(t) = K_c \left(\varepsilon(t) + \frac{1}{T_i} \int_{o}^{t} \varepsilon(\tau) d\tau + T_d \frac{\varepsilon(t)}{dt} \right)$$

In the Laplace domain

$$U(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) \mathcal{E}(s)$$

 $C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$

$$K_p = k_p$$
 $T_i = \frac{k_p}{k_i}$ T_d

Block-diagram of the standard form of a digital PID *(backward approximation)*

Block-diagram of a digital PID control with the derivative part on the output (*backward approximation*)

In practice, the error term is rarely differentiated to avoid abrupt variations in the control signal when there is a sudden step-like change in the setpoint. The derivative part is applied to the output. The diagram then becomes

Code lines for implementing the digital PID control (backward approximation)

$$\varepsilon(k) = r(k) - y_m(k)$$

$$u(k) = K_p \varepsilon(k) + u_i(k) + u_d(k)$$

$$u_i(k) = u_i(k-1) + K_p \frac{T_e}{T_i} \varepsilon(k-1)$$

$$1 \qquad K_n N$$

$$u_{d}(k) = \frac{1}{1 + \frac{NT_{e}}{T_{d}}} u_{d}(k-1) - \frac{\kappa_{p}N}{1 + \frac{NT_{e}}{T_{d}}} [y_{m}(k) - y_{m}(k-1)]$$

Anti-windup integral

- The integral part can lead to undesirable effects when, due to an excessively large error, the integrator becomes saturated
- The actuator then remains in the stop position, even when the system output varies

• One possible approach to eliminating this effect is to introduce a loop on the integrator, bringing the difference between the input u(k) and the output $u_s(k)$ of the saturation (real or simulated), with an integration constant T_t

Digital PID in computer code

```
# def Te, Ki, Kp, Kd, r
i = 0
e0 = e = 0
while running:
    # update measure
    y = ...
    e = r - y
    # update integral
    i += Ki*Te*e
    # compute command
    u = Kp * (e + i + Kd/Te*(e-e0))
    # save current error
    e0 = e
```


Design of the analog PID controller A brief recap

• To set up the analog PID controller, you need to select

$$K_p$$
 , T_i , T_d , T_t , N

- *N* is often set to *N*=10
- T_t is chosen from the range [0.1 T_i ; T_i]
- For the determination of the parameters K_p , T_i , T_d , adjustment methods have been proposed, such as those of Ziegler-Nichols.
- These settings form a starting point that can be refined according to the desired performance

Influence of the P, I and D parts in the case the parallel form of the digital PID

$$C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) = K_p + \frac{K_i}{s} + K_d s$$

Gain	T montée	T stabilisation	Dépassement	Erreur statique
K_p	Diminue	Augmente	Augmente	Diminue
K _i /	Diminue	Augmente	Augmente	Annule
K_d /	_	Diminue	Diminue	—

Démarche : partir d'un premier jeu de gains

- En simulation (système approximé) ou sur système réel
- Préréglage sur réponse indicielle
- Préréglage sur système bouclé

Le préréglage est parfois présenté comme un auto-réglage Mais souvent c'est vraiment un **pré**réglage...

Digital control by transposition of a analog PID controller – Take away messages

- Recommended transposition methods
 - Bilinear approximation (Tustin) or backward approximation (because of simplest formulas)
- Digital control performance is at best equivalent to that of analog control
 - suitable if the sampling period is fast compared to the main dynamic T_c of the controller: $T_s < T_c/10$
- Even if the stability of the closed-loop system with the analog controller is verified, this does not guarantee the stability of the closed-loop system with the digital controller !
 - In particular, it must be checked that the chosen sampling period does not result in a stability loss of the closed-loop system
 - The effect of the presence of the zero-order hold (additional delay) is not taken into account in the control design and may also affect stability and performance